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Received 10 November 2005
Published online 17 February 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. A quantum Hall double layer system at total Landau level filling factor ν = 1, seeded by a
modulated ac-voltage input signal of frequency inside the forbidden band gap, is demonstrated to work as
a digital amplifier of ultra weak signals. The theory employs to the sine-Gordon model and it is confirmed
by the first experimental observations of nonlinear bistable transmission in a pendula chain.

PACS. 73.43.Lp Collective excitations – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems –
05.45.Yv Solitons

1 Introduction

When a system submitted to a given external excitation
manifests two different and persistent responses, it is said
to be bistable. Bistability is a fundamental property at
the origin of hysteresis, as revealed originally in magnetic
materials. Recent works have shown that nonlinearity in a
wave equation can intrinsically lead to bistable transmis-
sion when the medium is submitted to boundary driving
or wave scattering. More precisely, when the excitation
is a periodic signal of frequency in a forbidden band-gap,
that normally has a vanishing transmission coefficient, the
system may switch to a high transmission state by the me-
diation of nonlinear excitations.

This nonlinear bistable transmission (NBT) has been
investigated both theoretically and experimentally in non-
linear optical materials [1–5] and numerically in Joseph-
son junctions [6–8]. Although such systems are of different
physical nature, NBT has a common origin, the nonlinear
supratransmission property [9–13]. Then the NBT pro-
cess has been given a comprehensive analytical approach
by means of the exact stationary solutions of the sine-
Gordon and nonlinear Schrödinger equations on the finite
interval submitted to a periodic boundary forcing [14,15].

The importance of predicting NBT in a nonlinear me-
dium is its application to elaborate particular devices as
switches, logic gates, memories, ultra-sensitive detectors
or amplifiers. Moreover its universality allows to conceive
such devices in a vast variety of nonlinear systems possess-
ing a forbidden band-gap : spin chains, Bose-Einstein con-
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densates, magnetic thin films, Josephson junctions trans-
mission lines or fiber guide arrays.

We consider here a quantum Hall double layer sys-
tem [16] at Landau level filling factor ν = 1, which pos-
sess properties similar to superconducting Josephson junc-
tions [17–21]. By submitting the system to a boundary
ac-voltage driving, we predict the existence of bistable
behaviour, demonstrate that the system may respond to
ultra weak applied signals and, under convenient modu-
lation of the seed boundary driving, discover through nu-
merical simulations that it can work as a digital amplifier.
By digital amplifier we understand a device acting as a
transducer of a sequence of low amplitude step-like sig-
nals to the same sequence with significantly large ampli-
tude output. In the numerical simulations made to sustain
our proposal, we obtain for an input signal of amplitude
0.15 µV and duration 100 ns, an output signal of ampli-
tude 30 µV and duration 110 ns.

The theory is then sustained and illustrated by the
first experimental observation of NBT in a pendula chain,
which shares with the quantum Hall bilayer the property
to obey the sine-Gordon model. Despite the intrinsic rough
quality of a mechanical chain, we obtain remarkable agree-
ment with the analytical description. The experimental
setup appears then as a simple, still spectacular, didactic
tool to demonstrate nonlinear bistable transmission.

2 The driven quantum Hall bilayer

2.1 The model

A quantum Hall bilayer system [16–21] consists of elec-
trons confined in closely separated two dimensional semi-
conductor layers submitted to intense magnetic field. In
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the absence of interlayer voltage, each layer of the sys-
tem has a filling factor ν = 1/2. Because the layers are
identical, an electron in one layer can be identified with
a pseudo-spin up, and in the other layer with a pseudo-
spin down. It is clear that the system has the lowest en-
ergy when all pseudo-spin lie in the plane, reflecting the
fact that in the ground state the electrons are equally dis-
tributed between the two layers.

Within such a formalism, a double layer quantum Hall
system is treated as an easy plane ferromagnet with a hard
axis anisotropy. An electron tunneling between the layers
corresponds there to a spin flip. Consequently, just like
ordinary easy axis ferromagnetic systems [22,23], the low
energy dynamics of the quantum Hall bilayer submitted at
one end to an ac interlayer voltage V is described by the
boundary-driven and damped sine-Gordon equation with
a free end [21]
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The field u(x, t) stands for the pseudo-spin in-plane (di-
mensionless) phase variable and the voltage across the bar-
rier at distance x is given by

V (x, t) =
�

e

∂u(x, t)
∂t

. (3)

The parameter β gives the hard axis anisotropy, it is re-
lated to the bilayer capacitance. ∆ is a tunneling ampli-
tude, � is a magnetic length, ρ an in-plane pseudo-spin
stiffness and γ is a phenomenological damping constant
(dissipation). The the bilayer extends on x ∈ [0, d]. For
future use as an example, we list the values of these pa-
rameters as found in [24,25] (units � = e = kB = 1 for
which frequencies read in Kelvin by the relation 1 K =
1.38 × 1011 s−1):

� = 40 nm, β = 7 K, ∆ = 8 × 10−5 K, ρ = 0.1 K, (4)

for which the band gap edge (see below) is ω0 ∼ 10 GHz.
As a matter of fact, the linear dispersion relation of the

model (1) shows the existence of a forbidden band gap.
Consequently, a bilayer with all electrons initially equally
distributed, will not respond, in the linear regime, to a
boundary interlayer voltage Vin(t) with its frequency in-
side the band gap, namely with

Vin(t) = V0 sin(ωt), ω2 < ω2
0 = 8β∆. (5)

In the nonlinear regime however the system will acquire
stationary solutions expressed in terms of Jacobi elliptic
functions, which, for the same boundary driving, can well
have two (or more) different expressions.

2.2 Ultra-weak signal detection

Indeed, as demonstrated in [14], and reproduced in the ap-
pendix, the sine-Gordon equation submitted to the bound-
ary driving (5) locks to a set of 3 stationary solutions

with two stable branches. Although these are neither ex-
act solutions of the damped case, nor match analyticaly
the boundary driving, the agreement shown by numerical
simulations is quite remarkable.

The main resulting property is the existence of a thres-
hold amplitude Vs (called supratransmission threshold af-
ter [9]) beyond which the system jumps from a state of
vanishing output values, to a state of large output values,
as a result of an intrinsic instability [10]. This threshold
can be assigned as the solution of an implicit equation
for given length d and frequency ω. For sufficiently large
lengths, it possesses an explicit approximate value

Vs ∼ 4
�ω

e
arctan

√

ω2
0

ω2
− 1 (6)

very useful for practical applications. In the case of pa-
rameter values (4), we obtain a threshold of about 13 µV .

Then the principle of a detector is the following: when
the system is driven right below the supratransmission
threshold Vs by a permanent excitation (called driving
seed), any superimposed signal can make it bifurcate to
the excited state (large output). The amplitude of the sig-
nal that activates the bifurcation can be made as small
as one wants by tuning the driving seed amplitude closer
and closer to the threshold, hence realizing the ultra-weak
signal detector. Moreover it appears from expression (6)
that the very amplitude Vs of the threshold can also be
tuned to low values by choosing the frequency close to ω0

(eigenfrequency), value for which Vs vanishes.
We show now that the property can be used to con-

ceive, under convenient choice of the driving seed, a device
that would work as an ultra-sensitive digital amplifier.

2.3 Digital amplifier

The numerical simulations have revealed the existence of
another threshold, say Ve, below which the system bifur-
cates back from a state of large output to a state of almost
vanishing output. This is a phenomenological extinction
threshold, directly related to the presence of damping, as
indeed Ve vanishes when γ → 0.

The presence of the extinction threshold allows now
to conceive an amplifier that would respond to signals of
weak amplitude and minimum duration. This is done by
a convenient modulation of the periodic seed amplitude as

Vin(t) = [V0(t) + S(t)] sin(ωt), (7)

V0(t) =
1
2
(A1 + A2) cos(λt) +

1
2
(A1 − A2), (8)

A1 < Vs, A2 < Ve, A1 − A2 ∼ Vs − Ve. (9)

Hereabove V0(t) is the seed modulation and S(t) the signal
to be detected assumed as a sequence of low amplitude
step functions of duration greater than one period 2π/λ
of the seed modulation. We shall use for instance

S(t) = As [θ(t − t1) − θ(t − t2)] , (10)



R. Khomeriki et al.: Quantum Hall bilayer digital amplifier 215

0   50 100 150 200 250 300
0  

5

10

15
A

1
 

V
e
  

V
S
 

A
2
 

V
in

 [µ
V

] 

Time  [ns]

Signal 
Noise

Seed

Fig. 1. Plot of the modulation amplitude V0(t) (Seed) and
signal S(t) (Signal+Noise) used for the input voltage (7). The
included short-time pulse represents noise. The amplitudes val-
ues (straight full lines) are A1 = 16.3 µV, A2 = 7.7 µV and
As = 0.15 µV, the modulation frequency is λ = 0.25 GHz while
the seed carrier frequency (not represented) is ω = ω0/2 =
5 GHz. The two dashed lines show the values of the threshold
voltages Vs (supratransmission) and Ve (extinction).

as representative of a square signal of amplitude As and
duration t2− t1 (θ stands for the Heaviside step function).

The working principle is then quite simple: before the
occurence of the signal S(t), namely for t < t1, the system
lives in a low output state. During the application of S(t),
the effective applied voltage Vin(t) overcomes the thresh-
old Vs and the system then jumps to an excited state
with large output, read as the amplified signal. As soon
as S(t) vanishes again, the effective applied voltage Vin(t)
decreases below the extinction threshold Ve and the sys-
tem bifurcates back to an almost vanishing output state.

This is demonstrated by a numerical simulation where
the input voltage is represented in Figure 1 with parame-
ters defined in the caption. The result of the simulation is
summarized in Figure 2 which represents the plot of the
output voltage Vout(t) obtained by integration of (1) under
boundary input (7) with parameters defined in Figure 1.
The input signal results to be amplified by a factor 200
while the short duration noise does not produce a response
(its duration is less than a modulation period).

3 The pendula chain

The pendula chain and the quantum Hall bilayer have in
common to obey the same model, the sine-Gordon equa-
tion. The purpose of this section is to demonstrate experi-
mentally the bistability of the periodically driven pendula
chain and to compare measures with theory.

The experimental device is the linearly coupled pen-
dula chain presented in Figure 3 and built follow-
ing [26,27]: each pendulum rotate freely around a fixed
guide (piano wire stretched between two supports) and is
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Fig. 2. Output value Vout(t) obtained by numerical integration
of (1) submitted to the boundary driving of Figure 1 with a
sample length d = 30 µm (normalized length L = 3.9) and
phenomenological damping γ = 0.1 ω0.

Fig. 3. The pendula chain used for the experiments. pictured
in the excited working regime where the input (periodic engine
torque) has an amplitude of about 0.4 rad while the output
amplitude is 2.5 rad. The angular frequency of the driving is
here 0.9 × ω0 where ω0 = 15.1 Hz is the eigenfrequency of a
single pendulum.

coupled to its neighbors by a coil spring acting as a lin-
ear torque. An electrical engine steered by a generator of
sinusoidal tension is rigidly connected to the pendulum
n = 0.

The dynamics of this chain is naturally described by
the Frenkel-Kontorova model [28]

ün + δu̇n−σ2 (un+1 +un−1−2un)+ω2
0 sin un = 0, (11)

where overdot means derivation with respect to time. The
variable un is the angular deviation of the nth pendulum,
ω0 is the eigenfrequency of a single pendulum and σ is
proportional to the linear torsion constant of the spring.
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The damping coefficient δ is phenomenological. The ap-
plied periodic driving is here modelized by the boundary
value

u0(t) = b cos(ωt), (12)

while the free end leads to

uN+1(t) = uN(t). (13)

Low amplitude oscillations exp[i(kn − ωt)] are character-
ized by the dispersion relation

ω2 = ω2
0 + 2σ2(1 − cos k), (14)

which defines a phonon band gap structure. Actually such
an expression allows to calculate the parameters ω0 and
σ by driving the chain at low amplitude for a given fre-
quency inside the phonon band and measuring the result-
ing wave number (i.e. counting the number of pendula
within a wavelength). We have obtained

ω0 = 15.1 Hz, σ = 32.4 Hz. (15)

The experiment consists then in driving the short chain of
Figure 3 with a frequency in the forbidden band gap , and
with an amplitude b that is varied from 0 to the threshold
bs defined in the appendix. Without external perturbation
the system locks to a periodic solution with low output
amplitude uN (t) which analytic continuous limit is the
solution 3 of (25). By applying then an external kick [29]
to the chain one makes the system bifurcate to a state
of large output amplitude (as shown on the picture of
Fig. 3) which analytical continuous limit expression is the
solution 1 of (25).

At given driving frequency ω = 0.5 ω0 we have var-
ied the driving amplitude and measured the correspond-
ing two allowed output amplitudes by following the above
procedure. The results are then reported on the graph
of the analytic bistability curves in Figure 4. Despite the
rather rough chain construction, the agreement is striking
and the experiment appears also as a quite spectacular
demonstration of the concept of nonlinear bistable trans-
mission.

The analytical description detailed in the appendix al-
lows to make prediction of behavior for various lengths
(or number N of pendula). The inset of Figure 4 repre-
sents the analytical input-output angular amplitudes plots
for different system lengths. In the case of very short
chains (N < 4) a bistable regime ceases to exist, similarly
with what happens in nonlinear optical media [2,5]. For
long chains the analytical calculations show that to a sin-
gle input amplitude there may correspond multiple (more
than 3) output amplitudes. However in long chain exper-
iments (N > 10) multistable regimes cannot be reached.
The point is that the chain is long enough to allow for
localization (generation of sine-Gordon breathers). The lo-
cal excitations then start to move, are reflected from the
free end, and prevent occurrence of stationary regimes. In
the case of our experimental setup the bistable stationary
states exist in the range 3 < N < 11 (the upper limit can
be slightly moved up by using driving frequencies closer
to the band edge).
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Fig. 4. Plot of the input to output angular amplitude depen-
dence of the solution for L = 4 and Ω = 0.5 (hence ω = ω0/2).
The graph above amplitude 4 arctan[C1] corresponds to the so-
lution (1) of (25), between 4 arctan[C1] and 4 arctan[C0] to the
solution (2) and below 4 arctan[C0] to the solution (3). The
bars are the results of measurements with the driven short
pendula chain. The inset presents the analytic dependence for
different lengths (or pendula number) as indicated.

4 Conclusion

The analytical description of bistable stationary regimes
for the sine-Gordon model, and in particular the deter-
mination of the supratransmission threshold, allowed us
to propose the quantum Hall bilayer as a digital ampli-
fier with a tunable sensitivity. The underlying working
mechanism is the intrinsic bistability of the transmission
property of the nonlinear medium submitted to an exter-
nal excitation with a frequency belonging to the natural
forbidden band gap.

Such a NBT property has been experimentally checked
on a mechanical system of coupled pendula and the agree-
ment with theory is spectacular, despite the inherent im-
perfections of the dispositive. This constitutes a strong in-
dication that the process is quite generic and, most likely
will manifest itself in very different physical situations.

As a matter of fact, another interesting application
of the principle developed here is the Josephson junction
transmission line (or the single long Jonsephson junction)
which obeys also the sine-Gordon model. In that case a
problem is to determine the convenient means to drive
the line (or the junction). One possibility is the use of
external microwave irradiation [30,31] which maps to a
Neuman (instead of Dirichlet) boundary value problem for
the sine-Gordon equation. Still the method can be applied
and it is expected to provide interesting results [32].
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Appendix A: Stationary solutions

Let us first map (1) to dimensionless variables by the
transformation

x′ = x
√

∆/(2π�2ρ), t′ = t
√

8β∆, (16)

and then forget the primes for convenience. The system
becomes the sine-Gordon equation

∂2u

∂t2
− ∂2u

∂x2
+ sin u + Γ

∂u

∂t
= 0, (17)

associated with the boundary-value problem

u(0, t) = b cos(Ωt), ux(L, t) = 0, (18)

for the dimensionless driving frequency (inside the band
gap)

Ω =
ω√
8β∆

< 1, (19)

and with the following definitions of the constants

b = − V0

ω0Ω
, L = d

√

∆/(2π�2ρ), Γ =
γ

ω0
. (20)

The stationary solutions of (17) with Γ = 0, on the finite
interval [0, L] submitted to the boundary conditions (18)
have been derived in [14]. For the seek of completeness,
we rewrite those solutions hereafter in a slightly different
way, more convenient for our purpose. They can be written
under the general expression

u(x, t) = 4 arctan[X(x)T (t)], (21)

with the following adaptation to the boundary amplitude

X(L) = tan(b/4), (22)

tuning to the free-end condition

Xx(L) = 0, (23)

and synchronization to the boundary period

T

(

t +
2π

Ω

)

= T (t). (24)

The maximum amplitude of the periodic function T (t)
has been scaled to unity so as to let X(x) to carry the
information about the actual amplitude.

We define then the output X(L) = A, which actually
serves as the basic variable of the problem, and write the
following 3 solutions (for the seek of simplicity we do not
assign an index to each solution and parameters but rather
indicate to which case they correspond by a number in
front of each equation):

(1) : X = A cn[k(x − L), µ], C1 < A,

(2) : X = A dn[k(x − L), µ], C0 < A < C1, (25)

(3) : X =
A

dn[k(x − L), µ]
, A < C0,

with the reference amplitudes C0 and C1 given by

C2
1 =

1
Ω2

− 1, (1 + C2
0 )K(C2

0 ) =
π

2Ω
, (26)

where K denote the complete elliptic integral of the first
kind. Note that the tuning (23) to the free end is auto-
matically satisfied by the above 3 expressions. It is then
straightforward to obtain the relation between the input,
say B = tan(b/4), and the output A by evaluating the
above expressions in x = 0

(1) : B = A cn[kL, µ],
(2) : B = A dn[kL, µ], (27)

(3) : B =
A

dn[kL, µ]
.

where the A’s vary in their allowed ranges. The bistable
nature of the solution takes precisely its origin in the exis-
tence of the above three output amplitudes A correspond-
ing to a single input B. The problem now is to express the
parameters k and µ in terms of A.

In those three cases, the time part has the common
structure

T = cn(ω(t − t0), ν), (28)

where the initial phases are not relevant. In each case we
have the following relations between the two new param-
eters ω (pseudo-frequency) and ν (argument):

(1) : ω2 =
A2

1 + A2
× 1

A2 − (1 + A2)ν2
,

(2) : ω2 =
A2

1 + A2
× 1

A2 + ν2
, (29)

(3) : ω2 =
A2

1 + A2
× 1

A2 + ν2
.

The synchronization requirement (24) now provides the
relation allowing to compute ν from A by solving, in each
of the 3 cases,

ΩK(ν) =
π

2
ω. (30)

This equation does not furnish the explicit function ν(A),
it is solved numerically in the 3 ranges A > C1 for the
solution (1), A ∈ [C0, C1] for the solution (2) and A ∈
[0, C0] for the solution (3).

Once the equation (30) solved, the pseudo-wavenum-
bers k of the Jacobi elliptic functions in (25) obey

(1) : k2 = ω2 − 1 − A2

1 + A2
,

(2) : k2 = ω2A2, (31)

(3) : k2 =
1

1 + A2
− ω2,
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while the arguments are then explicitly given by

(1) : µ2 =
1 + A2

A2
× k2

1 + k2(1 + A2)
,

(2) : µ2 =
1 + A2

A2
− 1

k2(1 + A2)
, (32)

(3) : µ2 = 1 + A2 − A2

k2(1 + A2)
.

Thus, from what precedes, every basic parameter ω, k,
µ and ν is explicitly given in terms of the fundamental
“variable” A.

In summary, the procedure to obtain the exact station-
ary solution to the boundary value problem (18), works as
follows: solve the system (30) to get ν as a function of the
output amplitude A (the variable) by replacing ω succes-
sively by its 3 expressions (29), compute then the argu-
ments µ and wavenumbers k in terms of A only through
(32) and (31), last the equations (27) furnish the sought
relations between the input B and the output A. This is
what we did in the case L = 4 and Ω = 0.5 to obtain the
continuous curves of Figure 4.

The determination of the threshold value bs of the in-
put amplitude 4 arctanB is obtained then as follows. The
function B(A) defined by the equation (3) of (27) has an
extremum at A = A0 defined by

∂

∂A

{
A

dn[kL, µ]

}

A=A0

= 0, (33)

where both parameters k and µ are functions of A ob-
tained through the procedure described here-above. Then
we simply have bs = 4 arctan[B(A0)]. Needless to say the
expression of A0 is not explicit and the procedure actu-
ally works numerically. In the chosen example (L = 4,
Ω = 0.5) we obtain by that method the threshold bs = 4.1
while the approximate formula 4 arctan

√

1/Ω2 − 1 de-
rived in the limit L → ∞ gives bs = 4.19.

References

1. H.M. Gibbs, S.L. McCall, T.N.C. Venkatesan, Phys. Rev.
Lett. 36, 1135 (1976)

2. H.G. Winful, J.H. Marburger, E. Garmire, Appl. Phys.
Lett. 35, 379 (1979)

3. W. Chen, D.L. Mills, Phys. Rev. B. 35, 524 (1987)
4. N.D. Sankey, D.F. Prelewitz, T.G. Brown, Appl. Phys.

Lett. 60, 1427 (1992)
5. H.G. Winful, R. Zamir, S. Feldman, Appl. Phys. Lett.

58, 1001 (1991)

6. O.H. Olsen, M.R. Samuelsen, Phys. Rev. B. 34, 3510
(1986)

7. D. Barday, M. Remoissenet, Phys. Rev. B. 41, 10387
(1990)

8. Y.S. Kivshar, O.H. Olsenand, M.R. Samuelsen, Phys.
Lett. A 168, 391 (1992)
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15. R. Khomeriki, J. Léon, Phys. Rev. Lett. 94, 243902

(2005)
16. Chapters IV (by S.M. Girvin, A.H. MacDonald) and III

(by J.P. Eisenstein) in Perspectives in Quantum Hall
Effect edited by S. Das Sarma, A. Pinczuk (Wiley, New
York, 1997)

17. X.G. Wen, A. Zee, Phys. Rev. B 47, 2265 (1993)
18. Z.F. Ezawa, A. Iwazaki, Phys. Rev. B 48, 15 189 (1993)
19. K. Yang, K. Moon, L. Belkhir, H. Mori, S.M. Girvin,

A.M. MacDonald, L. Zheng, D. Yoshioka, Phys. Rev. B
54, 11 644 (1996)

20. Y.E. Lozovik, A.V. Poushnov, Phys Lett. A 228, 399
(1997)

21. M.M. Fogler, F. Wilczek, Phys. Rev. Lett. 86, 1833
(2001)

22. H.J. Mikeska, J. Phys. C: Solid State Phys. 11, L29 (1978)
23. G. Wysin, A.R. Bishop, P. Kumar, J. Phys. C: Solid State

Phys. 17, 5975 (1984)
24. I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, K.W. West,

Phys. Rev. Lett. 84, 5808 (2000)
25. C.B. Hanna, A.H. MacDonald, S.M. Girvin, Phys. Rev.

B 63, 125305 (2001)
26. M. Remoissenet, Waves Called Solitons (Springer, Berlin,

1999)
27. A.C. Scott, Nonlinear Science, 2nd edn. (Oxford

University Press, New York, 2003)
28. O.M. Braun, Yu.S. Kivshar, The Frenkel-Kontorova

Model: Concepts, Methods, and Applications (Springer-
Verlag, Berlin, 2004)

29. A film of the bifurcation of the pendula chain from low
to large output amplitudes is presented on the web-page:
http://www.lpta.univ-montp2.fr/users/leon/

Bistable/

30. D. Barday, M. Remoissenet, Phys. Rev. B 41, 10387
(1990)

31. H.S.J. van der Zant, M. Barahona, A.E. Duwel, T.P.
Orlando, S. Watanabe, S. Strogatz, Physica D 119, 219
(1998)

32. D. Chevriaux, R. Khomeriki, J. Léon, Josephson super-
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